Reflexive algebras of matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

Reflexive Ideals in Iwasawa Algebras

Let G be a torsionfree compact p-adic analytic group. We give sufficient conditions on p and G which ensure that the Iwasawa algebra ΩG of G has no non-trivial two-sided reflexive ideals. Consequently, these conditions imply that every nonzero normal element in ΩG is a unit. We show that these conditions hold in the case when G is an open subgroup of SL2(Zp) and p is arbitrary. Using a previous...

متن کامل

On reflexive subobject lattices and reflexive endomorphism algebras

In this paper we study the reflexive subobject lattices and reflexive endomorphism algebras in a concrete category. For the category Set of sets and mappings, a complete characterization for both reflexive subobject lattices and reflexive endomorphism algebras is obtained. Some partial results are also proved for the category of abelian groups.

متن کامل

Minimization Problems for Generalized Reflexive and Generalized Anti-Reflexive Matrices

Let R ∈ Cm×m and S ∈ Cn×n be nontrivial unitary involutions, i.e., R = R = R−1 = ±Im and S = S = S−1 = ±In. A ∈ Cm×n is said to be a generalized reflexive (anti-reflexive) matrix if RAS = A (RAS = −A). Let ρ be the set of m × n generalized reflexive (anti-reflexive) matrices. Given X ∈ Cn×p, Z ∈ Cm×p, Y ∈ Cm×q and W ∈ Cn×q, we characterize the matrices A in ρ that minimize ‖AX−Z‖2+‖Y HA−WH‖2, a...

متن کامل

‎finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

a matrix $pintextmd{c}^{ntimes n}$ is called a generalized reflection matrix if $p^{h}=p$ and $p^{2}=i$‎. ‎an $ntimes n$‎ ‎complex matrix $a$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $p$ if $a=pap$ ($a=-pap$)‎. ‎in this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $axb=c$ and $dxe=f$ over reflexiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1985

ISSN: 0035-7596

DOI: 10.1216/rmj-1985-15-1-107